Vibronic coupling in semifluorinated alkanethiol junctions: implications for selection rules in inelastic electron tunneling spectroscopy.

نویسندگان

  • Jeremy M Beebe
  • H Justin Moore
  • T Randall Lee
  • James G Kushmerick
چکیده

Determining the selection rules for the interaction of tunneling charge carriers with molecular vibrational modes is important for a complete understanding of charge transport in molecular electronic junctions. Here, we report the low-temperature charge transport characteristics for junctions formed from hexadecanethiol molecules having varying degrees of fluorination. Our results demonstrate that C-F vibrations are not observed in inelastic electron tunneling spectroscopy (IETS). Because C-F vibrations are almost purely dipole transitions, the insensitivity to fluorine substitution implies that Raman modes are preferred over infrared modes. Further, the lack of attenuation of the C-H vibrational modes with fluorine substitution suggests that either the scattering cross section is not an additive quantity or the physical position of a vibrational mode within the junction influences whether the transition is observed in IETS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular signatures in the transport properties of molecular wire junctions: what makes a junction "molecular"?

The simplest component of molecular electronics consists of a single-molecule transport junction: a molecule sandwiched between source and drain electrodes, with or without a third gate electrode. In this Concept article, we focus on how molecules control transport in metal-electrode molecular junctions, and where the molecular signatures are to be found. In the situation where the molecule is ...

متن کامل

Functionality in single-molecule devices: model calculations and applications of the inelastic electron tunneling signal in molecular junctions.

We analyze how functionality could be obtained within single-molecule devices by using a combination of non-equilibrium Green's functions and ab initio calculations to study the inelastic transport properties of single-molecule junctions. First, we apply a full non-equilibrium Green's function technique to a model system with electron-vibration coupling. We show that the features in the inelast...

متن کامل

Vibronic effects in off-resonant molecular wire conduction

A model for the calculation of the inelastic contribution to the low-bias electron transport in molecular junctions is presented. It is an extension to the inelastic case of the Green’s function approach to the calculation of the conduction of such systems. The model is suited for the calculation in the off-resonance regime ~where molecular levels are far from the Fermi energy! and in the low b...

متن کامل

Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions.

Using a perturbative approach to simple model systems, we derive useful propensity rules for inelastic electron tunneling spectroscopy (IETS) of molecular wire junctions. We examine the circumstances under which this spectroscopy (that has no rigorous selection rules) obeys well defined propensity rules based on the molecular symmetry and on the topology of the molecule in the junction. Focusin...

متن کامل

Molecular electronics: some views on transport junctions and beyond.

The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2007